Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The extra-vascular water pathway regulates dynamic leaf hydraulic decline and recovery in Populus nigra.

Identifieur interne : 000071 ( Main/Exploration ); précédent : 000070; suivant : 000072

The extra-vascular water pathway regulates dynamic leaf hydraulic decline and recovery in Populus nigra.

Auteurs : Patrizia Trifil [Italie] ; Francesco Petruzzellis [Italie] ; Elisa Abate [Italie] ; Andrea Nardini [Italie]

Source :

RBID : pubmed:33161600

Abstract

Leaf hydraulic conductance (Kleaf ) is highly dynamic and typically responds to changes in water status and irradiance. However, the relative contribution of vascular (Kx ) and extra-vascular (Kox ) water pathways to Kleaf changes in response to water potential decline and recovery in function of light conditions remains poorly investigated. We investigated the dynamic responses of leaf hydraulics in Populus nigra L. by measuring Kleaf , Kx , and Kox changes under drought and upon recovery. Measurements were done at both low and high irradiance (LI and HI, respectively). Kleaf increased and became more vulnerable to dehydration under HI conditions than LI, due to marked changes of Kox . After re-watering, Kleaf recovered in parallel with Kox recovery, but Kleaf response to irradiance remained inhibited. Strong correlations between Kleaf and drought-induced membrane damage demonstrated the relevance of the cell-to-cell water pathway in driving the dynamic responses of Kleaf under drought and recovery. Our findings highlight the importance of coordination between water and light availability in modulating the overall Kleaf response to environmental conditions.

DOI: 10.1111/ppl.13266
PubMed: 33161600


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The extra-vascular water pathway regulates dynamic leaf hydraulic decline and recovery in Populus nigra.</title>
<author>
<name sortKey="Trifil, Patrizia" sort="Trifil, Patrizia" uniqKey="Trifil P" first="Patrizia" last="Trifil">Patrizia Trifil</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina</wicri:regionArea>
<wicri:noRegion>Messina</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Petruzzellis, Francesco" sort="Petruzzellis, Francesco" uniqKey="Petruzzellis F" first="Francesco" last="Petruzzellis">Francesco Petruzzellis</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dipartimento di Scienze della Vita, Università di Trieste, Trieste, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Dipartimento di Scienze della Vita, Università di Trieste, Trieste</wicri:regionArea>
<wicri:noRegion>Trieste</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Abate, Elisa" sort="Abate, Elisa" uniqKey="Abate E" first="Elisa" last="Abate">Elisa Abate</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina</wicri:regionArea>
<wicri:noRegion>Messina</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nardini, Andrea" sort="Nardini, Andrea" uniqKey="Nardini A" first="Andrea" last="Nardini">Andrea Nardini</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dipartimento di Scienze della Vita, Università di Trieste, Trieste, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Dipartimento di Scienze della Vita, Università di Trieste, Trieste</wicri:regionArea>
<wicri:noRegion>Trieste</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:33161600</idno>
<idno type="pmid">33161600</idno>
<idno type="doi">10.1111/ppl.13266</idno>
<idno type="wicri:Area/Main/Corpus">000019</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000019</idno>
<idno type="wicri:Area/Main/Curation">000019</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000019</idno>
<idno type="wicri:Area/Main/Exploration">000019</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The extra-vascular water pathway regulates dynamic leaf hydraulic decline and recovery in Populus nigra.</title>
<author>
<name sortKey="Trifil, Patrizia" sort="Trifil, Patrizia" uniqKey="Trifil P" first="Patrizia" last="Trifil">Patrizia Trifil</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina</wicri:regionArea>
<wicri:noRegion>Messina</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Petruzzellis, Francesco" sort="Petruzzellis, Francesco" uniqKey="Petruzzellis F" first="Francesco" last="Petruzzellis">Francesco Petruzzellis</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dipartimento di Scienze della Vita, Università di Trieste, Trieste, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Dipartimento di Scienze della Vita, Università di Trieste, Trieste</wicri:regionArea>
<wicri:noRegion>Trieste</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Abate, Elisa" sort="Abate, Elisa" uniqKey="Abate E" first="Elisa" last="Abate">Elisa Abate</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina</wicri:regionArea>
<wicri:noRegion>Messina</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nardini, Andrea" sort="Nardini, Andrea" uniqKey="Nardini A" first="Andrea" last="Nardini">Andrea Nardini</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dipartimento di Scienze della Vita, Università di Trieste, Trieste, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Dipartimento di Scienze della Vita, Università di Trieste, Trieste</wicri:regionArea>
<wicri:noRegion>Trieste</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Physiologia plantarum</title>
<idno type="eISSN">1399-3054</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Leaf hydraulic conductance (K
<sub>leaf</sub>
) is highly dynamic and typically responds to changes in water status and irradiance. However, the relative contribution of vascular (K
<sub>x</sub>
) and extra-vascular (K
<sub>ox</sub>
) water pathways to K
<sub>leaf</sub>
changes in response to water potential decline and recovery in function of light conditions remains poorly investigated. We investigated the dynamic responses of leaf hydraulics in Populus nigra L. by measuring K
<sub>leaf</sub>
, K
<sub>x</sub>
, and K
<sub>ox</sub>
changes under drought and upon recovery. Measurements were done at both low and high irradiance (LI and HI, respectively). K
<sub>leaf</sub>
increased and became more vulnerable to dehydration under HI conditions than LI, due to marked changes of K
<sub>ox</sub>
. After re-watering, K
<sub>leaf</sub>
recovered in parallel with K
<sub>ox</sub>
recovery, but K
<sub>leaf</sub>
response to irradiance remained inhibited. Strong correlations between K
<sub>leaf</sub>
and drought-induced membrane damage demonstrated the relevance of the cell-to-cell water pathway in driving the dynamic responses of K
<sub>leaf</sub>
under drought and recovery. Our findings highlight the importance of coordination between water and light availability in modulating the overall K
<sub>leaf</sub>
response to environmental conditions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">33161600</PMID>
<DateRevised>
<Year>2020</Year>
<Month>11</Month>
<Day>17</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1399-3054</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>Nov</Month>
<Day>08</Day>
</PubDate>
</JournalIssue>
<Title>Physiologia plantarum</Title>
<ISOAbbreviation>Physiol Plant</ISOAbbreviation>
</Journal>
<ArticleTitle>The extra-vascular water pathway regulates dynamic leaf hydraulic decline and recovery in Populus nigra.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/ppl.13266</ELocationID>
<Abstract>
<AbstractText>Leaf hydraulic conductance (K
<sub>leaf</sub>
) is highly dynamic and typically responds to changes in water status and irradiance. However, the relative contribution of vascular (K
<sub>x</sub>
) and extra-vascular (K
<sub>ox</sub>
) water pathways to K
<sub>leaf</sub>
changes in response to water potential decline and recovery in function of light conditions remains poorly investigated. We investigated the dynamic responses of leaf hydraulics in Populus nigra L. by measuring K
<sub>leaf</sub>
, K
<sub>x</sub>
, and K
<sub>ox</sub>
changes under drought and upon recovery. Measurements were done at both low and high irradiance (LI and HI, respectively). K
<sub>leaf</sub>
increased and became more vulnerable to dehydration under HI conditions than LI, due to marked changes of K
<sub>ox</sub>
. After re-watering, K
<sub>leaf</sub>
recovered in parallel with K
<sub>ox</sub>
recovery, but K
<sub>leaf</sub>
response to irradiance remained inhibited. Strong correlations between K
<sub>leaf</sub>
and drought-induced membrane damage demonstrated the relevance of the cell-to-cell water pathway in driving the dynamic responses of K
<sub>leaf</sub>
under drought and recovery. Our findings highlight the importance of coordination between water and light availability in modulating the overall K
<sub>leaf</sub>
response to environmental conditions.</AbstractText>
<CopyrightInformation>© 2020 Scandinavian Plant Physiology Society.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Trifilò</LastName>
<ForeName>Patrizia</ForeName>
<Initials>P</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0003-1568-054X</Identifier>
<AffiliationInfo>
<Affiliation>Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Petruzzellis</LastName>
<ForeName>Francesco</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Dipartimento di Scienze della Vita, Università di Trieste, Trieste, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Abate</LastName>
<ForeName>Elisa</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nardini</LastName>
<ForeName>Andrea</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Dipartimento di Scienze della Vita, Università di Trieste, Trieste, Italy.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>FFABR 2017</GrantID>
<Agency>Ministero dell'Istruzione, dell'Università e della Ricerca</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>11</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Denmark</Country>
<MedlineTA>Physiol Plant</MedlineTA>
<NlmUniqueID>1256322</NlmUniqueID>
<ISSNLinking>0031-9317</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>07</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>10</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>11</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>11</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>11</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>11</Month>
<Day>8</Day>
<Hour>20</Hour>
<Minute>38</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33161600</ArticleId>
<ArticleId IdType="doi">10.1111/ppl.13266</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Baaziz, K.B., Lopez, D., Rabot, A., Combes, D., Gousset, A., Bouzid, S., et al. (2012) Light-mediated K(leaf) induction and contribution of both the PIP1s and PIP2s aquaporins in five tree species: walnut (Juglans regia) case study. Tree Physiology, 32, 423-434.</Citation>
</Reference>
<Reference>
<Citation>Bartlett, M.K., Klein, T., Jansen, S., Choat, B. & Sack, L. (2016) The correlations and sequence of plant stomatal, hydraulic, and wilting responses to drought. Proceedings of the National Academy of Sciences of the United States of America, 113, 13098-13103.</Citation>
</Reference>
<Reference>
<Citation>Blackman, C.J., Brodribb, T.J. & Jordan, G.J. (2009) Leaf hydraulics and drought stress: response, recovery and survivorship in four woody temperate plant species. Plant, Cell & Environment, 32, 1584-1595.</Citation>
</Reference>
<Reference>
<Citation>Boer, H.J., Drake, P.L., Wendt, E., Price, C.A., Schulze, E.D., Turner, N.C., et al. (2016) Apparent overinvestment in leaf venation relaxes leaf morphological constraints on photosynthesis in arid habitats. Plant Physiology, 172, 2286-2299.</Citation>
</Reference>
<Reference>
<Citation>Bouche, P.S., Delzon, S., Choat, B., Badel, E., Brodribb, T.J., Burlett, R., et al. (2016) Are needles of Pinus pinaster more vulnerable to xylem embolism than branches? New insights from X-ray computed tomography. Plant, Cell & Environment, 39, 860-870.</Citation>
</Reference>
<Reference>
<Citation>Brodribb, T.J., Holbrook, N.M., Zwieniecki, M.A. & Palma, B. (2005) Leaf hydraulic capacity in ferns, conifers and angiosperms: impacts on photosynthetic maxima. The New Phytologist, 165, 839-846.</Citation>
</Reference>
<Reference>
<Citation>Brodribb, T.J., Feild, T. & Jordan, G. (2007) Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiology, 144, 1890-1898.</Citation>
</Reference>
<Reference>
<Citation>Brodribb, T.J., Bienaimé, D. & Marmottant, P. (2016) Revealing catastrophic failure of leaf networks under stress. Proceedings of the National Academy of Sciences of the United States of America, 113, 4865-4869.</Citation>
</Reference>
<Reference>
<Citation>Buckley, T.N. (2015) The contributions of apoplastic, symplastic and gas phase pathways for water transport outside the bundle sheath in leaves. Plant, Cell & Environment, 38, 7-22.</Citation>
</Reference>
<Reference>
<Citation>Cardoso, A.A., Brodribb, T.J., Lucani, C.J., DaMatta, F.M. & McAdam, S.A.M. (2018) Coordinated plasticity maintains hydraulic safety in sunflower leaves. Plant, Cell & Environment, 41, 2567-2576.</Citation>
</Reference>
<Reference>
<Citation>Charra-Vaskou, K., Badel, E., Burlett, R., Cochard, H., Delzon, S. & Mayr, S. (2012) Hydraulic efficiency and safety of vascular and non-vascular components in Pinus pinaster leaves. Tree Physiology, 32, 1161-1170.</Citation>
</Reference>
<Reference>
<Citation>Chaumont, F. & Tyerman, S.D. (2014) Aquaporins: highly regulated channels controlling plant water relations. Plant Physiology, 164, 1600-1618.</Citation>
</Reference>
<Reference>
<Citation>Cochard, H., Venisse, J.S., Barigah, T.S., Brunel, N., Herbette, S., Guilliot, A., et al. (2007) Putative role of aquaporins in variable hydraulic conductance of leaves in response to light. Plant Physiology, 143, 122-133.</Citation>
</Reference>
<Reference>
<Citation>Creek, D., Lamarque, L.J., Torres-Ruiz, J.M., Parise, C., Burlett, R., Tissue, D.T., et al. (2020) Xylem embolism in leaves does not occur with open stomata: evidence from direct observations using the optical visualization technique. Journal of Experimental Botany, 71, 1151-1159.</Citation>
</Reference>
<Reference>
<Citation>Cruz de Carvalho, M.H. (2008) Drought stress and reactive oxygen species. Plant Signaling & Behavior, 3, 156-165.</Citation>
</Reference>
<Reference>
<Citation>Delzon, S. & Cochard, H. (2014) Recent advances in tree hydraulics highlight the ecological significance of the hydraulic safety margin. The New Phytologist, 203, 355-358.</Citation>
</Reference>
<Reference>
<Citation>Duursma, R.A. & Choat, B. (2017) Fitplc: an R package to fit hydraulic vulnerability curves. Journal of Plant Hydraulics, 4, e002.</Citation>
</Reference>
<Reference>
<Citation>Flexas, J., Scoffoni, C., Gago, J. & Sack, L. (2013) Leaf mesophyll conductance and leaf hydraulic conductance: an introduction to their measurement and coordination. Journal of Experimental Botany, 64, 3965-3981.</Citation>
</Reference>
<Reference>
<Citation>Guyot, G., Scoffoni, C. & Sack, L. (2012) Combined impacts of irradiance and dehydration on leaf hydraulic conductance: insights into vulnerability and stomatal control. Plant, Cell & Environment, 35, 857-871.</Citation>
</Reference>
<Reference>
<Citation>Harayama, H., Kitao, M., Agathokleous, E. & Ishida, A. (2019) Effects of major vein blockage and aquaporin inhibition on leaf hydraulics and stomatal conductance. Proceedings of the Royal Society B, 286, 20190799.</Citation>
</Reference>
<Reference>
<Citation>Johnson, D.M., Meinzer, F.C., Woodruff, D.R. & McCulloh, K.A. (2009) Leaf xylem embolism, detected acoustically and by cryo-SEM, corresponds to decreases in leaf hydraulic conductance in four evergreen species. Plant, Cell & Environment, 32, 828-836.</Citation>
</Reference>
<Reference>
<Citation>Johnson, D.M., McCulloh, K.A., Meinzer, F.C. & Woodruff, D.R. (2012) Evidence for leaf xylem embolism as a primary factor in dehydration-induced declines in leaf hydraulic conductance. Plant, Cell & Environment, 35, 760-769.</Citation>
</Reference>
<Reference>
<Citation>Johnson, D.M., Berry, Z.C., Baker, K.V., Smith, D.D., McCulloh, K.A. & Domec, J.C. (2018) Leaf hydraulic parameters are more plastic in species that experience a wider range of leaf water potentials. Functional Ecology, 32, 894-903.</Citation>
</Reference>
<Reference>
<Citation>Kaur, G. & Asthir, B. (2017) Molecular responses to drought stress in plants. Biologia Plantarum, 61, 201-209.</Citation>
</Reference>
<Reference>
<Citation>Kim, Y.X. & Steudle, E. (2007) Light and turgor affect the water permeability (aquaporins) of parenchyma cells in the midrib of leaves of Zea mays. Journal of Experimental Botany, 58, 4119-4129.</Citation>
</Reference>
<Reference>
<Citation>Kim, Y.X. & Steudle, E. (2009) Gating of aquaporins by light and reactive oxygen species in leaf parenchyma cells of the midrib of Zea mays. Journal of Experimental Botany, 60, 547-556.</Citation>
</Reference>
<Reference>
<Citation>Laur, J. & Hacke, U.G. (2014) The role of water channel proteins in facilitating recovery of leaf hydraulic conductance from water stress in Populus trichocarpa. PLoS One, 9, e111751.</Citation>
</Reference>
<Reference>
<Citation>Li, Y., Xu, S., Gao, J., Pan, S. & Wang, G. (2016) Glucose- and mannose-induced stomatal closure is mediated by ROS production, Ca2+ and water channel in Vicia faba. Physiologia Plantarum, 156, 252-261.</Citation>
</Reference>
<Reference>
<Citation>Lo Gullo, M.A., Nardini, A., Trifilò, P. & Salleo, S. (2003) Changes in leaf hydraulics and stomatal conductance following drought stress and irrigation in Ceratonia siliqua (Carob tree). Physiologia Plantarum, 117, 186-194.</Citation>
</Reference>
<Reference>
<Citation>Lopez, D., Venisse, J.S., Fumanal, B., Chaumont, F., Guillot, E., Daniels, M.J., et al. (2013) Aquaporins and leaf hydraulics: poplar sheds new light. Plant & Cell Physiology, 54, 1963-1975.</Citation>
</Reference>
<Reference>
<Citation>Maurel, C. & Prado, K. (2017) Aquaporins and leaf water relations. In: Chaumont, F. & Tyrmen, S. (Eds.) Plant aquaporins. Signaling and communication in plants. Cham: Springer.</Citation>
</Reference>
<Reference>
<Citation>Maurel, C., Verdoucq, L., Luu, D.T. & Santoni, V. (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annual Review of Plant Biology, 59, 595-624.</Citation>
</Reference>
<Reference>
<Citation>Miniussi, M., Del Terra, L., Savi, T., Pallavicini, A. & Nardini, A. (2015) Aquaporins in Coffea arabica L.: identification, expression, and impacts on plant water relations and hydraulics. Plant Physiology and Biochemistry, 95, 92-102.</Citation>
</Reference>
<Reference>
<Citation>Muries, B., Mom, R., Benoit, P., Brunel-michac, N., Cochard, H., Drevet, P., et al. (2019) Aquaporins and water control in drought-stressed poplar leaves: A glimpse into the extraxylem vascular territories. Environmental and Experimental Botany, 162, 25-37.</Citation>
</Reference>
<Reference>
<Citation>Nardini, A. & Luglio, J. (2014) Leaf hydraulic capacity and drought vulnerability: possible trade-offs and correlations with climate across three major biomes. Functional Ecology, 28, 810-818.</Citation>
</Reference>
<Reference>
<Citation>Nardini, A. & Salleo, S. (2003) Effects of the experimental blockage of the major veins on hydraulics and gas exchange of Prunus laurocerasus L. leaves. Journal of Experimental Botany, 54, 1213-1219.</Citation>
</Reference>
<Reference>
<Citation>Nardini, A., Tyree, M.T. & Salleo, S. (2001) Xylem cavitation in the leaf of Prunus laurocerasus and its impact on leaf hydraulics. Plant Physiology, 125, 1700-1709.</Citation>
</Reference>
<Reference>
<Citation>Nardini, A., Salleo, S. & Raimondo, F. (2003) Changes in leaf hydraulic conductance correlate with leaf vein embolism in Cercis siliquastrum L. Trees, 17, 529-534.</Citation>
</Reference>
<Reference>
<Citation>Nardini, A., Salleo, S. & Andri, S. (2005) Circadian regulation of leaf hydraulic conductance in sunflower (Helianthus annuus L. cv Margot). Plant, Cell & Environment, 28, 750-759.</Citation>
</Reference>
<Reference>
<Citation>Nardini, A., Gascò, A., Trifilò, P., Lo Gullo, M.A. & Salleo, S. (2007) Ion-mediated enhancement of xylem hydraulic conductivity is not always suppressed by the presence of Ca2+ in the sap. Journal of Experimental Botany, 58, 2609-2615.</Citation>
</Reference>
<Reference>
<Citation>Nardini, A., Ramani, M., Gortan, E. & Salleo, S. (2008) Vein recovery from embolism occurs under negative pressure in leaves of sunflower (Helianthus anuus). Physiologia Plantarum, 133, 755-764.</Citation>
</Reference>
<Reference>
<Citation>Nardini, A., Raimondo, F., Lo Gullo, M.A. & Salleo, S. (2010) Leafminers help us understanding leaf hydraulic design. Plant, Cell & Environment, 33, 1091-1100.</Citation>
</Reference>
<Reference>
<Citation>Nardini, A., Pedà, G. & Salleo, S. (2012) Alternative methods for scaling leaf hydraulic conductance offer new insights into the structure-function relationships of sun and shade leaves. Functional Plant Biology, 39, 394-401.</Citation>
</Reference>
<Reference>
<Citation>Ogaya, R. & Peñuelas, J. (2006) Contrasting foliar responses to drought in Quercus ilex and Phillyrea latifolia. Biologia Plantarum, 50, 373-382.</Citation>
</Reference>
<Reference>
<Citation>Ohtsuka, A., Sack, L. & Taneda, H. (2018) Bundle sheath lignification mediates the linkage of leaf hydraulics and venation. Plant, Cell & Environment, 41, 342-353.</Citation>
</Reference>
<Reference>
<Citation>Petruzzellis, F., Tomasella, M., Miotto, A., Natale, S., Trifilò, P. & Nardini, A. (2020) A leaf selfie: using a smartphone to quantify leaf vulnerability to hydraulic dysfunction. Plants, 9, 234.</Citation>
</Reference>
<Reference>
<Citation>Prado, K., Cotelle, V., Li, G., Bellati, J., Tang, N., Tournaire-Roux, C., et al. (2019) Oscillating aquaporin phosphorylation and 14-3-3 proteins mediate the circadian regulation of leaf hydraulics. Plant Cell, 31, 417-429.</Citation>
</Reference>
<Reference>
<Citation>Sack, L. & Frole, K. (2006) Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees. Ecology, 87, 483-491.</Citation>
</Reference>
<Reference>
<Citation>Sack, L. & Holbrook, N.M. (2006) Leaf hydraulics. Annual Review of Plant Biology, 57, 361-381.</Citation>
</Reference>
<Reference>
<Citation>Sack, L. & Scoffoni, C. (2013) Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. The New Phytologist, 19, 983-1000.</Citation>
</Reference>
<Reference>
<Citation>Sack, L., Melcher, P.J., Zwieniecki, M.A. & Holbrook, N.M. (2002) The hydraulic conductance of the angiosperm leaf lamina: a comparison of three measurement methods. Journal of Experimental Botany, 53, 2177-2184.</Citation>
</Reference>
<Reference>
<Citation>Sack, L., Streeter, C.M. & Holbrook, N.M. (2004) Hydraulic analysis of water flow through leaves of sugar maple and red oak. Plant Physiology, 134, 1824-1833.</Citation>
</Reference>
<Reference>
<Citation>Salleo, S., Raimondo, F., Trifilò, P. & Nardini, A. (2003) Axial-to-radial water permeability of leaf major veins: a possible determinant of the impact of vein embolism on leaf hydraulics? Plant, Cell & Environment, 26, 1749-1758.</Citation>
</Reference>
<Reference>
<Citation>Savi, T., Marin, M., Luglio, J., Petruzzellis, F., Mayr, S. & Nardini, A. (2016) Leaf hydraulic vulnerability protects stem functionality under drought stress in Salvia officinalis. Functional Plant Biology, 43(4), 370-379.</Citation>
</Reference>
<Reference>
<Citation>Scoffoni, C. & Sack, L. (2015) Are leaves “freewheelin”? Testing for a wheeler-type effect in leaf xylem hydraulic decline. Plant, Cell & Environment, 38, 534-543.</Citation>
</Reference>
<Reference>
<Citation>Scoffoni, C., Pou, A., Aasamaa, K. & Sack, L. (2008) The rapid light response of leaf hydraulic conductance: new evidence from two experimental methods. Plant, Cell & Environment, 31, 1803-1812.</Citation>
</Reference>
<Reference>
<Citation>Scoffoni, C., Rawls, M., McKown, A. & CochardH, S.L. (2011) Decline of leaf hydraulic conductance with dehydration: relationship to leaf size and venation architecture. Plant Physiology, 156, 832-843.</Citation>
</Reference>
<Reference>
<Citation>Scoffoni, C., McKown, A.D., Rawls, M. & Sack, L. (2012) Dynamics of leaf hydraulic conductance with water status: quantification and analysis of species differences under steady state. Journal of Experimental Botany, 63, 643-658.</Citation>
</Reference>
<Reference>
<Citation>Scoffoni, C., Vuong, C., Diep, S., Cochard, H. & Sack, L. (2014) Leaf shrinkage with dehydration: coordination with hydraulic vulnerability and drought tolerance. Plant Physiology, 164, 1772-1788.</Citation>
</Reference>
<Reference>
<Citation>Scoffoni, C., Chatelet, D.S., Pasquet-Kok, J., Rawls, M., Donoghue, M.J., Edwards, E.J., et al. (2016) Hydraulic basis for the evolution of photosynthetic productivity. Nature Plants, 2, 16072.</Citation>
</Reference>
<Reference>
<Citation>Scoffoni, C., Albuquerque, C., Brodersen, C.R., Townes, S.T., John, G.P., Bartlett, M.K., et al. (2017) Outside-xylem vulnerability, not xylem embolism, controls leaf hydraulic decline during dehydration. Plant Physiology, 173, 1197-1210.</Citation>
</Reference>
<Reference>
<Citation>Scoffoni, C., Sack, L. & Ort, D. (2017) The causes and consequences of leaf hydraulic decline with dehydration. Journal of Experimental Botany, 68, 4479-4496.</Citation>
</Reference>
<Reference>
<Citation>Scoffoni, C., Albuquerque, C., Cochard, H., Buckley, T.N., Fletcher, L.R., Caringella, M.A., et al. (2018) The causes of leaf hydraulic vulnerability and its influence on gas exchange in Arabidopsis thaliana. Plant Physiology, 178, 1584-1601.</Citation>
</Reference>
<Reference>
<Citation>Seelig, H.D., Wolter, A. & Schröder, F.G. (2015) Leaf thickness and turgor pressure in bean during plant desiccation. Scientia Horticulturae, 184, 55-62.</Citation>
</Reference>
<Reference>
<Citation>Sellin, A., Sack, L., Õunapuu, E. & Karusion, A. (2011) Impact of light quality on leaf and shoot hydraulic properties: a case study in silver birch (Betula pendula). Plant, Cell & Environment, 34, 1079-1087.</Citation>
</Reference>
<Reference>
<Citation>Skelton, R.P., Brodribb, T.J. & Choat, B. (2017) Casting light on xylem vulnerability in an herbaceous species reveals a lack of segmentation. The New Phytologist, 214, 561-569.</Citation>
</Reference>
<Reference>
<Citation>Skelton, R.P., Dawson, T.E., Thompson, S.E., Shen, Y., Weitz, A.P. & Ackerly, D. (2018) Low vulnerability to xylem embolism in leaves and stems of North American oaks. Plant Physiology, 177, 1066-1077.</Citation>
</Reference>
<Reference>
<Citation>Trifilò, P., Gascò, A., Raimondo, F., Nardini, A. & Salleo, S. (2003) Kinetics of recovery of leaf hydraulic conductance and vein functionality from cavitation-induced embolism in sunflower. Journal of Experimental Botany, 54, 2323-2330.</Citation>
</Reference>
<Reference>
<Citation>Trifilò, P., Raimondo, F., Savi, T., Lo Gullo, M.A. & Nardini, A. (2016) The contribution of vascular and extra-vascular water pathways to drought-induced decline of leaf hydraulic conductance. Journal of Experimental Botany, 67, 5029-5039.</Citation>
</Reference>
<Reference>
<Citation>Trueba, S., Pan, R., Scoffoni, C., John, G.P., Davis, S.D. & Sack, L. (2019) Thresholds for leaf damage due to dehydration: declines of hydraulic function, stomatal conductance and cellular integrity precede those for photochemistry. The New Phytologist, 223, 134-149.</Citation>
</Reference>
<Reference>
<Citation>Tyree, M.T. & Ewers, F.W. (1991) Tansley Review No. 34. The hydraulic architecture of trees and other woody plants. The New Phytologist, 119, 345-360.</Citation>
</Reference>
<Reference>
<Citation>Tyree, M.T. & Zimmermann, M.H. (2002) Xylem structure and the ascent of sap, 2nd edition. Berlin: Springer-Verlag.</Citation>
</Reference>
<Reference>
<Citation>Tyree, M.T., Nardini, A., Salleo, S., Sack, L. & El Omari, B. (2005) The dependence of leaf hydraulic conductance on irradiance during HPFM measurements: any role for stomatal response? Journal of Experimental Botany, 56, 737-744.</Citation>
</Reference>
<Reference>
<Citation>Voicu, M.C. & Zwiazek, J.J. (2011) Diurnal and seasonal changes of leaf lamina hydraulic conductance in bur oak (Quercus macrocarpa) and trembling aspen (Populus tremuloides). Trees, 25, 485-495.</Citation>
</Reference>
<Reference>
<Citation>Voicu, M.C., Zwiazek, J.J. & Tyree, M.T. (2008) Light response of hydraulic conductance in bur oak (Quercus macrocarpa) leaves. Tree Physiology, 28, 1007-1015.</Citation>
</Reference>
<Reference>
<Citation>Xiong, D. & Nadal, M. (2020) Linking water relations and hydraulics with photosynthesis. The Plant Journal, 101, 800-815.</Citation>
</Reference>
<Reference>
<Citation>Xiong, D., Flexas, J., Yu, T., Peng, S. & Huang, J. (2017) Leaf anatomy mediates coordination of leaf hydraulic conductance and mesophyll conductance to CO2 in Oryza. The New Phytologist, 213, 572-583.</Citation>
</Reference>
<Reference>
<Citation>Xiong, D., Douthe, C. & Flexas, J. (2018) Differential coordination of stomatal conductance, mesophyll conductance, and leaf hydraulic conductance in response to changing light across species. Plant, Cell & Environment, 41, 436-450.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Italie</li>
</country>
</list>
<tree>
<country name="Italie">
<noRegion>
<name sortKey="Trifil, Patrizia" sort="Trifil, Patrizia" uniqKey="Trifil P" first="Patrizia" last="Trifil">Patrizia Trifil</name>
</noRegion>
<name sortKey="Abate, Elisa" sort="Abate, Elisa" uniqKey="Abate E" first="Elisa" last="Abate">Elisa Abate</name>
<name sortKey="Nardini, Andrea" sort="Nardini, Andrea" uniqKey="Nardini A" first="Andrea" last="Nardini">Andrea Nardini</name>
<name sortKey="Petruzzellis, Francesco" sort="Petruzzellis, Francesco" uniqKey="Petruzzellis F" first="Francesco" last="Petruzzellis">Francesco Petruzzellis</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000071 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000071 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:33161600
   |texte=   The extra-vascular water pathway regulates dynamic leaf hydraulic decline and recovery in Populus nigra.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:33161600" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020